Search results for "Fatigue life"

showing 2 items of 2 documents

A new quasi-static multi-degree of freedom tapered roller bearing model to accurately consider non-Hertzian contact pressures in time-domain simulati…

2014

The accuracy of the fatigue life calculations in rolling bearing simulations is highly dependent on the precision of the roller-raceway contact simulations and the ability to accurately include structural deflections of the supporting structure. Several different methods exist to simulate the pressure distributions, and in time-domain bearing simulations, where many contacts need evaluation, the simple and time efficient methods are more popular. These methods underestimate the fatigue life reduction due to roller end effects, overload and misalignments. Furthermore, existing time-domain rolling bearing models assume that the bearing rings remain circular, which can be a poor approximation…

EngineeringBearing (mechanical)business.industryNon-Hertzian contact pressureTapered roller bearingMechanical EngineeringStiffnessStructural engineeringCondensed Matter PhysicsMulti degree of freedomlaw.inventionFlexible supportContact mechanicsTapered roller bearinglawmedicineFatigue lifeTime domainmedicine.symptombusinessReduction (mathematics)Quasistatic processProceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
researchProduct

Fatigue life under non-Gaussian random loading from various models

2004

Fatigue test results on the 10HNAP steel under constant amplitude and random loading with non-Gaussian probability distribution function, zero mean value and wide-band frequency spectrum have been used to compare the life time estimation of the models proposed by Bannantine, Fatemi–Socie, Socie, Wang–Brown, Morel and Łagoda–Macha. Except the Morel proposal which accumulates damage step by step with a proper ethodology, all the other models use a cycle counting method. The rainflow algorithm is used to extract cycles from random histories of damage parameters in time domain. In the last model, where a strain energy density parameter is employed, additionally spectral method is evaluated for …

EngineeringGaussianProbability density function02 engineering and technologyIndustrial and Manufacturing EngineeringMécanique: Vibrations [Sciences de l'ingénieur]symbols.namesakeMécanique: Génie mécanique [Sciences de l'ingénieur]0203 mechanical engineeringRandom loadingApplied mathematicsGeneral Materials ScienceTime domainMécanique: Mécanique des structures [Sciences de l'ingénieur]Spectral methodStrain energyMécanique [Sciences de l'ingénieur]business.industryMechanical Engineering[SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph]Strain energy density functionFatigue life calculationStructural engineering[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]021001 nanoscience & nanotechnology[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of the structures [physics.class-ph][SPI.MECA.GEME]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanical engineering [physics.class-ph]020303 mechanical engineering & transportsMechanics of Materials[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph]Modeling and SimulationFrequency domainsymbols0210 nano-technologyCycle countSpectral methodbusinessRainflow algorithmVibration fatigue
researchProduct